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The use of hereditary kernels [1] with a weak singularity at the initial instant of time (t = 0) in solving
dynamic problems of the theory of linear viscoelasticity reveals some interesting features of the behavior
of the dynamic characteristics. This is because the corresponding relaxation (retardation) spectra have
a singularity of the same type with respect to the relaxation time 7 at 7 = 0, while the singularity param-
eter y(0 <y = 1) characterizes the broadening of the spectrum. In Fourier space this singular point
corresponds to an infinitely large frequency (w = ») [2], and therefore, in stationary dynamical problems,
when the characteristics of the system are determined by the product wr, the singularity is expressed only
through the parameter y and appears in explicit form if Tor wenters independently. This is clearly illustra-
ted by the characteristics of an acoustic wave propagating in an hereditary-elastic medium [3].

The solution of nonstationary dynamical problems reveals other interesting singularities, investigated
in [5] with reference to the example of a one-dimensional oscillator using Rabotnov's fuunction [4] as re-
laxation kernel. It is worthwhile continuing the investigation of the damped vibration regime, especially in
the presence of intense dissipative processes, which in the case of a delta spectrum lead to the appearance
of aperiodic motious [6].

1. We will consider the question of freely damped vibrations in relation to the example of a single~
mass system in motion as a result of an initial impulse. By virtue of the Boltzmann—Volterra hereditary
elastic relations,the equation of motion can be written in two equivalent forms, either in terms of the
relaxation kernel R(t) or in terms of the aftereffect kernel K(t)
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Here, x is a coordinate, F the pulse amplitude per unit mass, 4(t) the Dirac delta function, w _and w
the frequencies of the elastic vibrations corresponding to the unrelaxed values of the elastic modulus; de-
rivatives with respect to time are denoted by dots.

0+iR The solution of Egs. (1.1) and (1.2) in Laplace space is written in the form
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Here, the asterisk subscript denotes the unilateral Laplace transform of the
\ corresponding function,
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The solution in the space of the inverse transforms is determined from the

Pt Mellin ~Fourier inversion equation
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In order to evaluate integral (1.4), it is necessary to determine all the singular
points of the complex function x,(p). The weakly singular kernels considered below
have branch points (p = 0, p = ») and simple poles at values of p that make the de~-
nominators of Eqs. (1.3) vanish, i.e., that are roots of the equation
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Fig. 2 The inversion theorem is applicable to multivalued functions with a braunch

point only for the first sheet of the Riemann surface, i.e., when =7 < arg p < 7. Accordingly, the closed
contour should be composed of the straight-line segment [c ~ iR, ¢ +iR], ¢ > 0, the segments ~R < s < ~p
at the edges of the cut along the negative real semiaxis, and arcs of circles, one of which, Cp, lo] = p, closes
the edge of the cut, while the other two, Cgr» | p! =R, connect the edges of the cut with the vertical segment
(Fig. 1). By virtue of Jordan's Lemma, as R —» the integrals along the curves Cg vanish. For weakly
singular kernels the integral along C, also tends to zero as p—0. Using the basic theorem of the theory

of residues, we can write the solution of Egs. (1.1) and (1.2) in the form
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Here the sum is taken over all the isolated singular points (poles).

2, As an example, we will consider the simplest case of weakly singular kernels — the Abel after-
effect kernel:

K(t)=[T(r)w" 1", K. (p)= (p%)”, 7By =1Fx 2.1)
The resolvent kernel of kernel (2.1) = the relaxation kerbel —is given by the Rabotnov function:
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Here, I'(y) is the gamma function; y is the singularity parameter (0, 1]; and ¢, T, are the relaxation
and retardation times, respectively. In Eq. (2.2) and in what follows, where the quantities 7, » are written

with out indices, it is assumed that 7 = Te v =y ,and 7 = T ifv =y,

Substituting Egs. (2.1) and 2.2) in (1.3), we find
24 (D) = F(p" %) pY (p° + % + 0. 2)8, 5= vi (2.3)
In order to determine the poles of the function x,(p), it is necessary to find the roots of the eguation
pEup? Y + @02 =0 (2.4)

It is easy to see that Eq. (2.4) does not have real negative roots. In fact, setting p = =y, y > 0in
(2.4), we obtain an equation that contradicts the starting assumption.

In order to find the roots of Eq. (2.4), we set p = rel?, Then, separating the real and imaginary parts
we obtain a system of two equations:

2
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Here, it has been assumed that in the elastic region we, = 1. Obviously, system (2.5) does not have
roots at any | ¢ | < 1/27. In order to calculate the roots of system of equations (2.5), we introduce the new -
variables x; = r? and Xg = wp~Y. Then for each fixed angle 1/ 27 < ¢ < 7 and given y we obtain a system of
two linear equations in two unknowns x; and xy. After finding the values of x; and x,, we find r and », which,
together with the selected ¥, determine the root of the characteristic equation. Upon substituting —y for ¢
we obtain the conjugate complex root.

Thus, in the plane with the cut-out negative real semiaxis =7 < =7, Eq. (2.4)has two conjugate com-
plex roots p; o =~a =i at each fixedw. The behavior of these roots as functions of w is shown in Fig. 2,
where as parameter we have selected the quaatity y, whose values are indicated by the figure adjacent to
the curves. At v = 1 characteristic equation (2.4) corresponds, correct to a constant, with Maxwell's
rheological model and the roots are given by the equation

Pue = — Y £ (g® — 1) (2.6)

It follows from (2.6) that at w = 2 there are two real roots, one of which tends to zero as n — =, while
the other tends to infinity. As y— 0 the roots of Eq. (2.4) give the solution for undamped elastic vibrations
(i.., they are imaginary), and as » varies from 0 to infinity, they vary from iwm to 0.

Knowing the behavior of the roots of the characteristic equation, we write the solution (1.6) in the
form
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The quantity Ay(t) describing the elastic aftereffect may be regarded as the Laplace transform of the
spectral function

sin vy - Folr(t+ 03,7

(2.9)
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which gives the distribution of the relaxation parameters of the dynamical system.
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In the guasistatic case distribution function (2.9) goes over into the Abel kernel retardation-time
distribution function
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Expressiouns (2.7) and (2.8) define harmonic vibrations with natural frequency w and damping coeffi-
cient o. The behavior of these quantities as a function of Inw is illustrated in Fig. 3. It is clear from
Fig. 3 that « passes through a maximum, while w decreases monotonically from 1 to 0 with increase in
In%. The logarithmic decrement A =2raw=!is constant along the lines % = const. In Fig. 4, we have
plotted in y, — 7 coordinates the isodecremental lines for y = 1 (solid lines) and y = 0.5 (dashed lines).
The values of w are indicated by the figures adjacent to the curves, The shaded region above the straight
line n = 2 (A = «) corresponds to the region of aperiodicity, while the region beneath this straight line cor-
responds to the region of damped vibrations. I the elastic modulus relaxes completely, we obtain a quasi-
Maxwellian model, which at y =1 goes over into the usual Maxwell model with the boundary of the region

of aperiodicity at r = 1/2. For fractional y, there is no region of aperiodicity.

It should be noted that as y—1 solution (2.7) goes continuously over into the solution corresponding
to the region of vibration of a Maxwell material. However, in this case it is not possible to obtain a solu~
tion corresponding to the region of aperiodicity.

Thus, we have been able to trace the effect of the parameter vy, characterizing the "smearing" of the
corresponding spectrum, on the dynamic characteristics of the system: logarithmic decrement, natural
frequency, and damping coefficient. Moreover, it is possible to establish the nature of the vibratory pro-
cess, whose principle characteristic consists in the impossibility of the damped vibrations going over
into the aperiodic mode.

It is known that if the intensity of the dissipative process is sufficiently large actual vibratory sys-
tems may exhibit aperiodic behavior. In order to describe this fact, it is necessary to use other distri-
bution functions. Certain information relating to this question may be found, for example,in [7, 8].
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